翻訳と辞書
Words near each other
・ Standard Chartered Zimbabwe
・ Standard Chemical Company
・ Standard Chinese
・ Standard Chinese (disambiguation)
・ Standard Chinese phonology
・ Standard City, Illinois
・ Standard Club
・ Standard CMMI Appraisal Method for Process Improvement
・ Standard Coffee
・ Standard College
・ Standard Color Reference of America
・ Standard Coltrane
・ Standard column family
・ Standard Comics
・ Standard Commands for Programmable Instruments
Standard complex
・ Standard components (food processing)
・ Standard Compression Scheme for Unicode
・ Standard conditions for temperature and pressure
・ Standard conjectures on algebraic cycles
・ Standard Coosa-Thatcher Company
・ Standard Corridor
・ Standard cost accounting
・ Standard Cost Coding System
・ Standard cross-cultural sample
・ Standard cubic feet per minute
・ Standard cubic foot
・ Standard curve
・ Standard data model
・ Standard data system


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Standard complex : ウィキペディア英語版
Standard complex

In mathematics, the standard complex, also called standard resolution, bar resolution, bar complex, bar construction, is a way of constructing resolutions in homological algebra. It was first introduced for the special case of algebras over a commutative ring by and and has since been generalized in many ways.
The name "bar complex" comes from the fact that used a vertical bar | as a shortened form of the tensor product ⊗ in their notation for the complex.
==Definition==

If ''A'' is an associative algebra over a field ''K'', the standard complex is
:\cdots\rightarrow A\otimes A\otimes A\rightarrow A\otimes A\rightarrow A \rightarrow 0\,,
with the differential given by
:d(a_0\otimes \cdots\otimes a_)=\sum_^n (-1)^i a_0\otimes\cdots\otimes a_ia_\otimes\cdots\otimes a_\,.
If ''A'' is a unital ''K''-algebra, the standard complex is exact. (A\otimes A\otimes A\rightarrow A\otimes A ) is a free ''A''-bimodule resolution of the ''A''-bimodule ''A''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Standard complex」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.